1
JEE Main 2021 (Online) 22th July Evening Shift
Numerical
+4
-1
Change Language
If the concentration of glucose (C6H12O6) in blood is 0.72 g L$$-$$1, the molarity of glucose in blood is ____________ $$\times$$ 10$$-$$3 M. (Nearest integer)

[Given : Atomic mass of C = 12, H = 1, O = 16 u]
Your input ____
2
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let Sn denote the sum of first n-terms of an arithmetic progression. If S10 = 530, S5 = 140, then S20 $$-$$ S6 is equal to:
A
1862
B
1842
C
1852
D
1872
3
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R $$\to$$ R be defined as

$$f(x) = \left\{ {\matrix{ { - {4 \over 3}{x^3} + 2{x^2} + 3x,} & {x > 0} \cr {3x{e^x},} & {x \le 0} \cr } } \right.$$. Then f is increasing function in the interval
A
$$\left( { - {1 \over 2},2} \right)$$
B
(0,2)
C
$$\left( { - 1,{3 \over 2}} \right)$$
D
($$-$$3, $$-$$1)
4
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) be the solution of the differential equation $$\cos e{c^2}xdy + 2dx = (1 + y\cos 2x)\cos e{c^2}xdx$$, with $$y\left( {{\pi \over 4}} \right) = 0$$. Then, the value of $${(y(0) + 1)^2}$$ is equal to :
A
e1/2
B
e$$-$$1/2
C
e$$-$$1
D
e
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12