1
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The number of integral values of m so that the abscissa of point of intersection of lines 3x + 4y = 9 and y = mx + 1 is also an integer, is :
A
1
B
2
C
3
D
0
2
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The solutions of the equation $$\left| {\matrix{ {1 + {{\sin }^2}x} & {{{\sin }^2}x} & {{{\sin }^2}x} \cr {{{\cos }^2}x} & {1 + {{\cos }^2}x} & {{{\cos }^2}x} \cr {4\sin 2x} & {4\sin 2x} & {1 + 4\sin 2x} \cr } } \right| = 0,(0 < x < \pi )$$, are
A
$${\pi \over {12}},{\pi \over 6}$$
B
$${\pi \over 6},{{5\pi } \over 6}$$
C
$${{5\pi } \over {12}},{{7\pi } \over {12}}$$
D
$${{7\pi } \over {12}},{{11\pi } \over {12}}$$
3
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha$$, $$\beta$$, $$\gamma$$ be the real roots of the equation, x3 + ax2 + bx + c = 0, (a, b, c $$\in$$ R and a, b $$\ne$$ 0). If the system of equations (in u, v, w) given by $$\alpha$$u + $$\beta$$v + $$\gamma$$w = 0, $$\beta$$u + $$\gamma$$v + $$\alpha$$w = 0; $$\gamma$$u + $$\alpha$$v + $$\beta$$w = 0 has non-trivial solution, then the value of $${{{a^2}} \over b}$$ is
A
5
B
3
C
1
D
0
4
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{(2x - 1)\cos \sqrt {{{(2x - 1)}^2} + 5} } \over {\sqrt {4{x^2} - 4x + 6} }}} dx$$ is equal to (where c is a constant of integration)
A
$${1 \over 2}\sin \sqrt {{{(2x - 1)}^2} + 5} + c$$
B
$${1 \over 2}\cos \sqrt {{{(2x + 1)}^2} + 5} + c$$
C
$${1 \over 2}\cos \sqrt {{{(2x - 1)}^2} + 5} + c$$
D
$${1 \over 2}\sin \sqrt {{{(2x + 1)}^2} + 5} + c$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12