1
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The solutions of the equation $$\left| {\matrix{ {1 + {{\sin }^2}x} & {{{\sin }^2}x} & {{{\sin }^2}x} \cr {{{\cos }^2}x} & {1 + {{\cos }^2}x} & {{{\cos }^2}x} \cr {4\sin 2x} & {4\sin 2x} & {1 + 4\sin 2x} \cr } } \right| = 0,(0 < x < \pi )$$, are
A
$${\pi \over {12}},{\pi \over 6}$$
B
$${\pi \over 6},{{5\pi } \over 6}$$
C
$${{5\pi } \over {12}},{{7\pi } \over {12}}$$
D
$${{7\pi } \over {12}},{{11\pi } \over {12}}$$
2
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha$$, $$\beta$$, $$\gamma$$ be the real roots of the equation, x3 + ax2 + bx + c = 0, (a, b, c $$\in$$ R and a, b $$\ne$$ 0). If the system of equations (in u, v, w) given by $$\alpha$$u + $$\beta$$v + $$\gamma$$w = 0, $$\beta$$u + $$\gamma$$v + $$\alpha$$w = 0; $$\gamma$$u + $$\alpha$$v + $$\beta$$w = 0 has non-trivial solution, then the value of $${{{a^2}} \over b}$$ is
A
5
B
3
C
1
D
0
3
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{(2x - 1)\cos \sqrt {{{(2x - 1)}^2} + 5} } \over {\sqrt {4{x^2} - 4x + 6} }}} dx$$ is equal to (where c is a constant of integration)
A
$${1 \over 2}\sin \sqrt {{{(2x - 1)}^2} + 5} + c$$
B
$${1 \over 2}\cos \sqrt {{{(2x + 1)}^2} + 5} + c$$
C
$${1 \over 2}\cos \sqrt {{{(2x - 1)}^2} + 5} + c$$
D
$${1 \over 2}\sin \sqrt {{{(2x + 1)}^2} + 5} + c$$
4
JEE Main 2021 (Online) 18th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The equation of one of the straight lines which passes through the point (1, 3) and makes an angles $${\tan ^{ - 1}}\left( {\sqrt 2 } \right)$$ with the straight line, y + 1 = 3$${\sqrt 2 }$$ x is :
A
$$4\sqrt 2 x + 5y - \left( {15 + 4\sqrt 2 } \right) = 0$$
B
$$5\sqrt 2 x + 4y - \left( {15 + 4\sqrt 2 } \right) = 0$$
C
$$4\sqrt 2 x + 5y - 4\sqrt 2 = 0$$
D
$$4\sqrt 2 x - 5y - \left( {5 + 4\sqrt 2 } \right) = 0$$
JEE Main Papers
2023
2021
EXAM MAP