1
JEE Main 2020 (Online) 9th January Morning Slot
Numerical
+4
-0
Change Language
The number of distinct solutions of the equation
$${\log _{{1 \over 2}}}\left| {\sin x} \right| = 2 - {\log _{{1 \over 2}}}\left| {\cos x} \right|$$ in the interval [0, 2$$\pi $$], is ____.
Your input ____
2
JEE Main 2020 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{dx} \over {{{(x + 4)}^{{8 \over 7}}}{{(x - 3)}^{{6 \over 7}}}}}} $$ is equal to :
(where C is a constant of integration)
A
$${1 \over 2}{\left( {{{x - 3} \over {x + 4}}} \right)^{{3 \over 7}}} + C$$
B
$${\left( {{{x - 3} \over {x + 4}}} \right)^{{1 \over 7}}} + C$$
C
$$ - {1 \over {13}}{\left( {{{x - 3} \over {x + 4}}} \right)^{{{13} \over 7}}} + C$$
D
-$${\left( {{{x - 3} \over {x + 4}}} \right)^{-{1 \over 7}}} + C$$
3
JEE Main 2020 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If for all real triplets (a, b, c), ƒ(x) = a + bx + cx2; then $$\int\limits_0^1 {f(x)dx} $$ is equal to :
A
$${1 \over 6}\left\{ {f(0) + f(1) + 4f\left( {{1 \over 2}} \right)} \right\}$$
B
$$2\left\{ 3{f(1) + 2f\left( {{1 \over 2}} \right)} \right\}$$
C
$${1 \over 3}\left\{ {f(0) + f\left( {{1 \over 2}} \right)} \right\}$$
D
$${1 \over 2}\left\{ {f(1) + 3f\left( {{1 \over 2}} \right)} \right\}$$
4
JEE Main 2020 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If e1 and e2 are the eccentricities of the ellipse, $${{{x^2}} \over {18}} + {{{y^2}} \over 4} = 1$$ and the hyperbola, $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1$$ respectively and (e1, e2) is a point on the ellipse, 15x2 + 3y2 = k, then k is equal to :
A
17
B
16
C
15
D
14
JEE Main Papers
2023
2021
EXAM MAP