1
JEE Main 2020 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If for all real triplets (a, b, c), ƒ(x) = a + bx + cx2; then $$\int\limits_0^1 {f(x)dx} $$ is equal to :
A
$${1 \over 6}\left\{ {f(0) + f(1) + 4f\left( {{1 \over 2}} \right)} \right\}$$
B
$$2\left\{ 3{f(1) + 2f\left( {{1 \over 2}} \right)} \right\}$$
C
$${1 \over 3}\left\{ {f(0) + f\left( {{1 \over 2}} \right)} \right\}$$
D
$${1 \over 2}\left\{ {f(1) + 3f\left( {{1 \over 2}} \right)} \right\}$$
2
JEE Main 2020 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If e1 and e2 are the eccentricities of the ellipse, $${{{x^2}} \over {18}} + {{{y^2}} \over 4} = 1$$ and the hyperbola, $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1$$ respectively and (e1, e2) is a point on the ellipse, 15x2 + 3y2 = k, then k is equal to :
A
17
B
16
C
15
D
14
3
JEE Main 2020 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let the observations xi (1 $$ \le $$ i $$ \le $$ 10) satisfy the
equations, $$\sum\limits_{i = 1}^{10} {\left( {{x_1} - 5} \right)} $$ = 10 and $$\sum\limits_{i = 1}^{10} {{{\left( {{x_1} - 5} \right)}^2}} $$ = 40.
If $$\mu $$ and $$\lambda $$ are the mean and the variance of the
observations, x1 – 3, x2 – 3, ...., x10 – 3, then
the ordered pair ($$\mu $$, $$\lambda $$) is equal to :
A
(6, 6)
B
(3, 3)
C
(3, 6)
D
(6, 3)
4
JEE Main 2020 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The number of real roots of the equation,
e4x + e3x – 4e2x + ex + 1 = 0 is :
A
1
B
2
C
3
D
4
JEE Main Papers
2023
2021
EXAM MAP