1
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Two newspapers A and B are published in a city. It is known that 25% of the city populations reads A and 20% reads B while 8% reads both A and B. Further, 30% of those who read A but not B look into advertisements and 40% of those who read B but not A also look into advertisements, while 50% of those who read both A and B look into advertisements. Then the percentage of the population who look into advertisement is :-
A
13.5
B
13
C
12.8
D
13.9
2
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If m is chosen in the quadratic equation

(m2 + 1) x2 – 3x + (m2 + 1)2 = 0

such that the sum of its roots is greatest, then the absolute difference of the cubes of its roots is :-
A
$$4\sqrt 3 $$
B
$$8\sqrt 3 $$
C
$$8\sqrt 5 $$
D
$$10\sqrt 5 $$
3
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\int {{e^{\sec x}}}$$ $$(\sec x\tan xf(x) + \sec x\tan x + se{x^2}x)dx$$
= esecxf(x) + C then a possible choice of f(x) is :-
A
x sec x + tan x + 1/2
B
sec x + xtan x - 1/2
C
sec x - tan x - 1/2
D
sec x + tan x + 1/2
4
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the function $$f(x) = \left\{ {\matrix{ {a|\pi - x| + 1,x \le 5} \cr {b|x - \pi | + 3,x > 5} \cr } } \right.$$
is continuous at x = 5, then the value of a – b is :-
A
$${2 \over {\pi - 5 }}$$
B
$${2 \over {5 - \pi }}$$
C
$${-2 \over {\pi + 5 }}$$
D
$${2 \over {\pi + 5 }}$$
JEE Main Papers
2023
2021
EXAM MAP