1
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If a unit vector $$\overrightarrow a $$ makes angles $$\pi $$/3 with $$\widehat i$$ , $$\pi $$/ 4 with $$\widehat j$$ and $$\theta $$$$ \in $$(0, $$\pi $$) with $$\widehat k$$, then a value of $$\theta $$ is :-
A
$${{5\pi } \over {6}}$$
B
$${{5\pi } \over {12}}$$
C
$${{2\pi } \over {3}}$$
D
$${{\pi } \over {4}}$$
2
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The mean and the median of the following ten numbers in increasing order 10, 22, 26, 29, 34, x, 42, 67, 70, y are 42 and 35 respectively, then $${y \over x}$$ is equal to
A
$${7 \over 2}$$
B
$${8 \over 3}$$
C
$${9 \over 4}$$
D
$${7 \over 3}$$
3
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The area (in sq. units) of the region
A = {(x, y) : $${{y{}^2} \over 2}$$ $$ \le $$ x $$ \le $$ y + 4} is :-
A
30
B
18
C
$${{53} \over 3}$$
D
16
4
JEE Main 2019 (Online) 9th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The domain of the definition of the function

$$f(x) = {1 \over {4 - {x^2}}} + {\log _{10}}({x^3} - x)$$ is
A
(-1, 0) $$ \cup $$ (1, 2) $$ \cup $$ (2, $$\infty $$)
B
(-2, -1) $$ \cup $$ (-1,0) $$ \cup $$ (2, $$\infty $$)
C
(1, 2) $$ \cup $$ (2, $$\infty $$)
D
(-1, 0) $$ \cup $$ (1,2) $$ \cup $$ (3, $$\infty $$)
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12