1
JEE Main 2019 (Online) 10th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let z1 and z2 be any two non-zero complex numbers such that   $$3\left| {{z_1}} \right| = 4\left| {{z_2}} \right|.$$  If  $$z = {{3{z_1}} \over {2{z_2}}} + {{2{z_2}} \over {3{z_1}}}$$  then :
A
$${\rm I}m\left( z \right) = 0$$
B
$$\left| z \right| = \sqrt {{17 \over 2}} $$
C
$$\left| z \right| =$$ $${1 \over 2}\sqrt {9 + 16{{\cos }^2}\theta } $$
D
Re(z) $$=$$ 0
2
JEE Main 2019 (Online) 10th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let  $${\rm I} = \int\limits_a^b {\left( {{x^4} - 2{x^2}} \right)} dx.$$  If I is minimum then the ordered pair (a, b) is -
A
$$\left( {\sqrt 2 , - \sqrt 2 } \right)$$
B
$$\left( {0,\sqrt 2 } \right)$$
C
$$\left( { - \sqrt 2 ,\sqrt 2 } \right)$$
D
$$\left( { - \sqrt 2 ,0} \right)$$
3
JEE Main 2019 (Online) 10th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The shortest distance between the point  $$\left( {{3 \over 2},0} \right)$$   and the curve y = $$\sqrt x $$, (x > 0), is -
A
$${{\sqrt 3 } \over 2}$$
B
$${5 \over 4}$$
C
$${3 \over 2}$$
D
$${{\sqrt 5 } \over 2}$$
4
JEE Main 2019 (Online) 10th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If  $${{dy} \over {dx}} + {3 \over {{{\cos }^2}x}}y = {1 \over {{{\cos }^2}x}},\,\,x \in \left( {{{ - \pi } \over 3},{\pi \over 3}} \right)$$  and  $$y\left( {{\pi \over 4}} \right) = {4 \over 3},$$  then  $$y\left( { - {\pi \over 4}} \right)$$   equals -
A
$${1 \over 3} + {e^6}$$
B
$${1 \over 3}$$
C
$${1 \over 3}$$ + e3
D
$$-$$ $${4 \over 3}$$
JEE Main Papers
2023
2021
EXAM MAP