The position vectors of two 1 kg particles, (A) and (B), are given by $$ \overrightarrow{\mathrm{r}}_{\mathrm{A}}=\left(\alpha_1 \mathrm{t}^2 \hat{i}+\alpha_2 \mathrm{t} \hat{j}+\alpha_3 \mathrm{t} \hat{k}\right) \mathrm{m} \text { and } \overrightarrow{\mathrm{r}}_{\mathrm{B}}=\left(\beta_1 \hat{\mathrm{t}} \hat{i}+\beta_2 \mathrm{t}^2 \hat{j}+\beta_3 \mathrm{t} \hat{k}\right) \mathrm{m} \text {, respectively; } $$ $\left(\alpha_1=1 \mathrm{~m} / \mathrm{s}^2, \alpha_2=3 \mathrm{n} \mathrm{m} / \mathrm{s}, \alpha_3=2 \mathrm{~m} / \mathrm{s}, \beta_1=2 \mathrm{~m} / \mathrm{s}, \beta_2=-1 \mathrm{~m} / \mathrm{s}^2, \beta_3=4 \mathrm{pm} / \mathrm{s}\right)$, where t is time, n and $p$ are constants. At $t=1 \mathrm{~s},\left|\overrightarrow{V_A}\right|=\left|\overrightarrow{V_B}\right|$ and velocities $\vec{V}_A$ and $\vec{V}_B$ of the particles are orthogonal to each other. At $t=1 \mathrm{~s}$, the magnitude of angular momentum of particle (A) with respect to the position of particle (B) is $\sqrt{\mathrm{L}} \mathrm{kgm}^2 \mathrm{~s}^{-1}$. The value of L is _________.
A circular disc reaches from top to bottom of an inclined plane of length $$l$$. When it slips down the plane, if takes $$t \mathrm{~s}$$. When it rolls down the plane then it takes $$\left(\frac{\alpha}{2}\right)^{1 / 2} t \mathrm{~s}$$, where $$\alpha$$ is _________.
A string is wrapped around the rim of a wheel of moment of inertia $$0.40 \mathrm{~kgm}^2$$ and radius $$10 \mathrm{~cm}$$. The wheel is free to rotate about its axis. Initially the wheel is at rest. The string is now pulled by a force of $$40 \mathrm{~N}$$. The angular velocity of the wheel after $$10 \mathrm{~s}$$ is $$x \mathrm{~rad} / \mathrm{s}$$, where $$x$$ is __________.
A circular table is rotating with an angular velocity of $$\omega \mathrm{~rad} / \mathrm{s}$$ about its axis (see figure). There is a smooth groove along a radial direction on the table. A steel ball is gently placed at a distance of $$1 \mathrm{~m}$$ on the groove. All the surfaces are smooth. If the radius of the table is $$3 \mathrm{~m}$$, the radial velocity of the ball w.r.t. the table at the time ball leaves the table is $$x \sqrt{2} \omega \mathrm{~m} / \mathrm{s}$$, where the value of $$x$$ is _________.