A body of mass '$$m$$' is projected with a speed '$$u$$' making an angle of $$45^{\circ}$$ with the ground. The angular momentum of the body about the point of projection, at the highest point is expressed as $$\frac{\sqrt{2} m u^3}{X g}$$. The value of '$$X$$' is _________.
Two identical spheres each of mass $$2 \mathrm{~kg}$$ and radius $$50 \mathrm{~cm}$$ are fixed at the ends of a light rod so that the separation between the centers is $$150 \mathrm{~cm}$$. Then, moment of inertia of the system about an axis perpendicular to the rod and passing through its middle point is $$\frac{x}{20} \mathrm{~kg} \mathrm{m^{2 }}$$, where the value of $$x$$ is ___________.
Two discs of moment of inertia $$I_1=4 \mathrm{~kg} \mathrm{~m}^2$$ and $$I_2=2 \mathrm{~kg} \mathrm{~m}^2$$, about their central axes & normal to their planes, rotating with angular speeds $$10 \mathrm{~rad} / \mathrm{s}$$ & $$4 \mathrm{~rad} / \mathrm{s}$$ respectively are brought into contact face to face with their axes of rotation coincident. The loss in kinetic energy of the system in the process is _________ J.
Consider a Disc of mass $$5 \mathrm{~kg}$$, radius $$2 \mathrm{~m}$$, rotating with angular velocity of $$10 \mathrm{~rad} / \mathrm{s}$$ about an axis perpendicular to the plane of rotation. An identical disc is kept gently over the rotating disc along the same axis. The energy dissipated so that both the discs continue to rotate together without slipping is ________ J.