Four identical discs each of mass '$$\mathrm{M}$$' and diameter '$$\mathrm{a}$$' are arranged in a small plane as shown in figure. If the moment of inertia of the system about $$\mathrm{OO}^{\prime}$$ is $$\frac{x}{4} \,\mathrm{Ma}^{2}$$. Then, the value of $$x$$ will be ____________.
A solid cylinder length is suspended symmetrically through two massless strings, as shown in the figure. The distance from the initial rest position, the cylinder should be unbinding the strings to achieve a speed of $$4 \mathrm{~ms}^{-1}$$, is ____________ cm. (take g = $$10 \mathrm{~ms}^{-2}$$)
A pulley of radius $$1.5 \mathrm{~m}$$ is rotated about its axis by a force $$F=\left(12 \mathrm{t}-3 \mathrm{t}^{2}\right) N$$ applied tangentially (while t is measured in seconds). If moment of inertia of the pulley about its axis of rotation is $$4.5 \mathrm{~kg} \mathrm{~m}^{2}$$, the number of rotations made by the pulley before its direction of motion is reversed, will be $$\frac{K}{\pi}$$. The value of K is ___________.
The radius of gyration of a cylindrical rod about an axis of rotation perpendicular to its length and passing through the center will be ___________ $$\mathrm{m}$$.
Given, the length of the rod is $$10 \sqrt{3} \mathrm{~m}$$.