A solid sphere of mass 2 kg is making pure rolling on a horizontal surface with kinetic energy 2240 J. The velocity of centre of mass of the sphere will be _______ ms$$^{-1}$$.
If a solid sphere of mass 5 kg and a disc of mass 4 kg have the same radius. Then the ratio of moment of inertia of the disc about a tangent in its plane to the moment of inertia of the sphere about its tangent will be $$\frac{x}{7}$$. The value of $$x$$ is ___________.
$$\mathrm{I_{CM}}$$ is the moment of inertia of a circular disc about an axis (CM) passing through its center and perpendicular to the plane of disc. $$\mathrm{I_{AB}}$$ is it's moment of inertia about an axis AB perpendicular to plane and parallel to axis CM at a distance $$\frac{2}{3}$$R from center. Where R is the radius of the disc. The ratio of $$\mathrm{I_{AB}}$$ and $$\mathrm{I_{CM}}$$ is $$x:9$$. The value of $$x$$ is _____________.
A uniform solid cylinder with radius R and length L has moment of inertia I$$_1$$, about the axis of the cylinder. A concentric solid cylinder of radius $$R'=\frac{R}{2}$$ and length $$L'=\frac{L}{2}$$ is carved out of the original cylinder. If I$$_2$$ is the moment of inertia of the carved out portion of the cylinder then $$\frac{I_1}{I_2}=$$ __________.
(Both I$$_1$$ and I$$_2$$ are about the axis of the cylinder)