A solid cylinder is released from rest from the top of an inclined plane of inclination $$30^{\circ}$$ and length $$60 \mathrm{~cm}$$. If the cylinder rolls without slipping, its speed upon reaching the bottom of the inclined plane is __________ $$\mathrm{ms}^{-1}$$. (Given $$\mathrm{g}=10 \mathrm{~ms}^{-2}$$)
A uniform disc of mass $0.5 \mathrm{~kg}$ and radius $r$ is projected with velocity $18 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=0$ s on a rough horizontal surface. It starts off with a purely sliding motion at $\mathrm{t}=0 \mathrm{~s}$. After $2 \mathrm{~s}$ it acquires a purely rolling motion (see figure). The total kinetic energy of the disc after $2 \mathrm{~s}$ will be __________ $\mathrm{J}$ (given, coefficient of friction is $0.3$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$ ).
A thin uniform rod of length $$2 \mathrm{~m}$$, cross sectional area '$$A$$' and density '$$\mathrm{d}$$' is rotated about an axis passing through the centre and perpendicular to its length with angular velocity $$\omega$$. If value of $$\omega$$ in terms of its rotational kinetic energy $$E$$ is $$\sqrt{\frac{\alpha E}{A d}}$$ then value of $$\alpha$$ is ______________.