A circular table is rotating with an angular velocity of $$\omega \mathrm{~rad} / \mathrm{s}$$ about its axis (see figure). There is a smooth groove along a radial direction on the table. A steel ball is gently placed at a distance of $$1 \mathrm{~m}$$ on the groove. All the surfaces are smooth. If the radius of the table is $$3 \mathrm{~m}$$, the radial velocity of the ball w.r.t. the table at the time ball leaves the table is $$x \sqrt{2} \omega \mathrm{~m} / \mathrm{s}$$, where the value of $$x$$ is _________.
Three balls of masses $$2 \mathrm{~kg}, 4 \mathrm{~kg}$$ and $$6 \mathrm{~kg}$$ respectively are arranged at centre of the edges of an equilateral triangle of side $$2 \mathrm{~m}$$. The moment of inertia of the system about an axis through the centroid and perpendicular to the plane of triangle, will be ________ $$\mathrm{kg} \mathrm{~m}^2$$.
A hollow sphere is rolling on a plane surface about its axis of symmetry. The ratio of rotational kinetic energy to its total kinetic energy is $$\frac{x}{5}$$. The value of $$x$$ is _________.
A solid sphere and a hollow cylinder roll up without slipping on same inclined plane with same initial speed $$v$$. The sphere and the cylinder reaches upto maximum heights $$h_1$$ and $$h_2$$ respectively, above the initial level. The ratio $$h_1: h_2$$ is $$\frac{n}{10}$$. The value of $$n$$ is __________.