Consider a Disc of mass $$5 \mathrm{~kg}$$, radius $$2 \mathrm{~m}$$, rotating with angular velocity of $$10 \mathrm{~rad} / \mathrm{s}$$ about an axis perpendicular to the plane of rotation. An identical disc is kept gently over the rotating disc along the same axis. The energy dissipated so that both the discs continue to rotate together without slipping is ________ J.
A body of mass $$5 \mathrm{~kg}$$ moving with a uniform speed $$3 \sqrt{2} \mathrm{~ms}^{-1}$$ in $$X-Y$$ plane along the line $$y=x+4$$. The angular momentum of the particle about the origin will be _________ $$\mathrm{kg} \mathrm{~m}^2 \mathrm{~s}^{-1}$$.
A cylinder is rolling down on an inclined plane of inclination $$60^{\circ}$$. It's acceleration during rolling down will be $$\frac{x}{\sqrt{3}} m / s^2$$, where $$x=$$ ________ (use $$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$$).
A ring and a solid sphere roll down the same inclined plane without slipping. They start from rest. The radii of both bodies are identical and the ratio of their kinetic energies is $$\frac{7}{x}$$, where $$x$$ is _________.