A thin uniform rod of length $$2 \mathrm{~m}$$, cross sectional area '$$A$$' and density '$$\mathrm{d}$$' is rotated about an axis passing through the centre and perpendicular to its length with angular velocity $$\omega$$. If value of $$\omega$$ in terms of its rotational kinetic energy $$E$$ is $$\sqrt{\frac{\alpha E}{A d}}$$ then value of $$\alpha$$ is ______________.
A particle of mass 100 g is projected at time t = 0 with a speed 20 ms$$^{-1}$$ at an angle 45$$^\circ$$ to the horizontal as given in the figure. The magnitude of the angular momentum of the particle about the starting point at time t = 2s is found to be $$\mathrm{\sqrt K~kg~m^2/s}$$. The value of K is ___________.
(Take g = 10 ms$$^{-2}$$)
A solid sphere of mass 2 kg is making pure rolling on a horizontal surface with kinetic energy 2240 J. The velocity of centre of mass of the sphere will be _______ ms$$^{-1}$$.
If a solid sphere of mass 5 kg and a disc of mass 4 kg have the same radius. Then the ratio of moment of inertia of the disc about a tangent in its plane to the moment of inertia of the sphere about its tangent will be $$\frac{x}{7}$$. The value of $$x$$ is ___________.