Solution of $$12 \mathrm{~g}$$ of non-electrolyte (A) prepared by dissolving it in $$1000 \mathrm{~mL}$$ of water exerts the same osmotic pressure as that of $$0.05 ~\mathrm{M}$$ glucose solution at the same temperature. The empirical formula of $$\mathrm{A}$$ is $$\mathrm{CH}_{2} \mathrm{O}$$. The molecular mass of $$\mathrm{A}$$ is __________ g. (Nearest integer)
80 mole percent of $$\mathrm{MgCl}_{2}$$ is dissociated in aqueous solution. The vapour pressure of $$1.0 ~\mathrm{molal}$$ aqueous solution of $$\mathrm{MgCl}_{2}$$ at $$38^{\circ} \mathrm{C}$$ is ____________ $$\mathrm{mm} ~\mathrm{Hg.} ~\mathrm{(Nearest} ~\mathrm{integer)}$$
Given : Vapour pressure of water at $$38^{\circ} \mathrm{C}$$ is $$50 \mathrm{~mm} ~\mathrm{Hg}$$
0.004 M K$$_2$$SO$$_4$$ solution is isotonic with 0.01 M glucose solution. Percentage dissociation of K$$_2$$SO$$_4$$ is ___________ (Nearest integer)
An aqueous solution of volume $$300 \mathrm{~cm}^{3}$$ contains $$0.63 \mathrm{~g}$$ of protein. The osmotic pressure of the solution at $$300 \mathrm{~K}$$ is 1.29 mbar. The molar mass of the protein is ___________ $$\mathrm{g} ~\mathrm{mol}^{-1}$$
Given : R = 0.083 L bar K$$^{-1}$$ mol$$^{-1}$$