A uniform magnetic field of 0.4 T acts perpendicular to a circular copper disc 20 cm in radius. The disc is having a uniform angular velocity of 10 $ \pi $ rad s-1 about an axis through its centre and perpendicular to the disc. What is the potential difference developed between the axis of the disc and the rim? $(\pi=3.14)$
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between $t = 0$ to $t = 4s$?
The magnetic field of an E.M. wave is given by $\vec{B} = \left( \frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \right) 30 \sin \left[ \omega \left( t - \frac{z}{c} \right) \right]$ (S.I. Units).
The corresponding electric field in S.I. units is:
A balloon and its content having mass M is moving up with an acceleration ‘a’. The mass that must be released from the content so that the balloon starts moving up with an acceleration ‘3a’ will be
(Take ‘g’ as acceleration due to gravity)