1
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let m and M respectively be the minimum and the maximum values of $$f(x) = {\sin ^{ - 1}}2x + \sin 2x + {\cos ^{ - 1}}2x + \cos 2x,\,x \in \left[ {0,{\pi \over 8}} \right]$$. Then m + M is equal to :

A
$$1 + \sqrt 2 + \pi $$
B
$$\left( {1 + \sqrt 2 } \right)\pi $$
C
$$\pi + \sqrt 2 $$
D
$$1 + \pi $$
2
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha$$1, $$\alpha$$2 ($$\alpha$$1 < $$\alpha$$2) be the values of $$\alpha$$ fo the points ($$\alpha$$, $$-$$3), (2, 0) and (1, $$\alpha$$) to be collinear. Then the equation of the line, passing through ($$\alpha$$1, $$\alpha$$2) and making an angle of $${\pi \over 3}$$ with the positive direction of the x-axis, is :

A
$$x - \sqrt 3 y - 3\sqrt 3 + 1 = 0$$
B
$$\sqrt 3 x - y + \sqrt 3 + 3 = 0$$
C
$$x - \sqrt 3 y + 3\sqrt 3 + 1 = 0$$
D
$$\sqrt 3 x - y + \sqrt 3 - 3 = 0$$
3
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the eccentricity of the ellipse $${x^2} + {a^2}{y^2} = 25{a^2}$$ be b times the eccentricity of the hyperbola $${x^2} - {a^2}{y^2} = 5$$, where a is the minimum distance between the curves y = ex and y = logex. Then $${a^2} + {1 \over {{b^2}}}$$ is equal to :

A
$${3 \over 2}$$
B
$${5 \over 2}$$
C
3
D
5
4
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha = \tan \left( {{{5\pi } \over {16}}\sin \left( {2{{\cos }^{ - 1}}\left( {{1 \over {\sqrt 5 }}} \right)} \right)} \right)$$ and $$\beta = \cos \left( {{{\sin }^{ - 1}}\left( {{4 \over 5}} \right) + {{\sec }^{ - 1}}\left( {{5 \over 3}} \right)} \right)$$ where the inverse trigonometric functions take principal values. Then, the equation whose roots are $$\alpha$$ and $$\beta$$ is :

A
$$15{x^2} - 8x - 7 = 0$$
B
$$5{x^2} - 12x + 7 = 0$$
C
$$25{x^2} - 18x - 7 = 0$$
D
$$25{x^2} - 32x + 7 = 0$$
JEE Main Papers
2023
2021
EXAM MAP