1
JEE Main 2021 (Online) 27th July Morning Shift
Numerical
+4
-1
Change Language
Let the domain of the function

$$f(x) = {\log _4}\left( {{{\log }_5}\left( {{{\log }_3}(18x - {x^2} - 77)} \right)} \right)$$ be (a, b). Then the value of the integral $$\int\limits_a^b {{{{{\sin }^3}x} \over {({{\sin }^3}x + {{\sin }^3}(a + b - x)}}} dx$$ is equal to _____________.
Your input ____
2
JEE Main 2021 (Online) 27th July Morning Shift
Numerical
+4
-1
Change Language
Let $$f(x) = \left| {\matrix{ {{{\sin }^2}x} & { - 2 + {{\cos }^2}x} & {\cos 2x} \cr {2 + {{\sin }^2}x} & {{{\cos }^2}x} & {\cos 2x} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {1 + \cos 2x} \cr } } \right|,x \in [0,\pi ]$$. Then the maximum value of f(x) is equal to ______________.
Your input ____
3
JEE Main 2021 (Online) 27th July Morning Shift
Numerical
+4
-1
Change Language
Let $$F:[3,5] \to R$$ be a twice differentiable function on (3, 5) such that

$$F(x) = {e^{ - x}}\int\limits_3^x {(3{t^2} + 2t + 4F'(t))dt} $$. If $$F'(4) = {{\alpha {e^\beta } - 224} \over {{{({e^\beta } - 4)}^2}}}$$, then $$\alpha$$ + $$\beta$$ is equal to _______________.
Your input ____
4
JEE Main 2021 (Online) 27th July Morning Shift
Numerical
+4
-1
Change Language
Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f : S $$\to$$ S
such that f(m . n) = f(m) . f(n) for every m, n $$\in$$ S and m . n $$\in$$ S is equal to _____________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12