1
JEE Main 2021 (Online) 24th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The population P = P(t) at time 't' of a certain species follows the differential equation

$${{dP} \over {dt}}$$ = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is :
A
$${\log _e}18$$
B
$${1 \over 2}{\log _e}18$$
C
2$${\log _e}18$$
D
$${\log _e}9$$
2
JEE Main 2021 (Online) 24th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R → R be defined as f (x) = 2x – 1 and g : R - {1} → R be defined as g(x) = $${{x - {1 \over 2}} \over {x - 1}}$$. Then the composition function f(g(x)) is :
A
one-one but not onto
B
onto but not one-one
C
both one-one and onto
D
neither one-one nor onto
3
JEE Main 2021 (Online) 24th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The function
f(x) = $${{4{x^3} - 3{x^2}} \over 6} - 2\sin x + \left( {2x - 1} \right)\cos x$$ :
A
increases in $$\left( { - \infty ,{1 \over 2}} \right]$$
B
decreases in $$\left( { - \infty ,{1 \over 2}} \right]$$
C
increases in $$\left[ {{1 \over 2},\infty } \right)$$
D
decreases in $$\left[ {{1 \over 2},\infty } \right)$$
4
JEE Main 2021 (Online) 24th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to 0} {{\int\limits_0^{{x^2}} {\left( {\sin \sqrt t } \right)dt} } \over {{x^3}}}$$ is equal to :
A
$${1 \over {15}}$$
B
0
C
$${2 \over 3}$$
D
$${3 \over 2}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12