1
JEE Main 2021 (Online) 1st September Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Consider the system of linear equations

$$-$$x + y + 2z = 0

3x $$-$$ ay + 5z = 1

2x $$-$$ 2y $$-$$ az = 7

Let S1 be the set of all a$$\in$$R for which the system is inconsistent and S2 be the set of all a$$\in$$R for which the system has infinitely many solutions. If n(S1) and n(S2) denote the number of elements in S1 and S2 respectively, then
A
n(S1) = 2, n(S2) = 2
B
n(S1) = 1, n(S2) = 0
C
n(S1) = 2, n(S2) = 0
D
n(S1) = 0, n(S2) = 2
2
JEE Main 2021 (Online) 1st September Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Two squares are chosen at random on a chessboard (see figure). The probability that they have a side in common is :

JEE Main 2021 (Online) 1st September Evening Shift Mathematics - Probability Question 108 English
A
$${2 \over 7}$$
B
$${1 \over 18}$$
C
$${1 \over 7}$$
D
$${1 \over 9}$$
3
JEE Main 2021 (Online) 1st September Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If y = y(x) is the solution curve of the differential equation $${x^2}dy + \left( {y - {1 \over x}} \right)dx = 0$$ ; x > 0 and y(1) = 1, then $$y\left( {{1 \over 2}} \right)$$ is equal to :
A
$${3 \over 2} - {1 \over {\sqrt e }}$$
B
$$3 + {1 \over {\sqrt e }}$$
C
3 + e
D
3 $$-$$ e
4
JEE Main 2021 (Online) 1st September Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The function $$f(x) = {x^3} - 6{x^2} + ax + b$$ is such that $$f(2) = f(4) = 0$$. Consider two statements :

Statement 1 : there exists x1, x2 $$\in$$(2, 4), x1 < x2, such that f'(x1) = $$-$$1 and f'(x2) = 0.

Statement 2 : there exists x3, x4 $$\in$$ (2, 4), x3 < x4, such that f is decreasing in (2, x4), increasing in (x4, 4) and $$2f'({x_3}) = \sqrt 3 f({x_4})$$.

Then
A
both Statement 1 and Statement 2 are true
B
Statement 1 is false and Statement 2 is true
C
both Statement 1 and Statement 2 are false
D
Statement 1 is true and Statement 2 is false
JEE Main Papers
2023
2021
EXAM MAP