1
JEE Main 2021 (Online) 17th March Morning Shift
Numerical
+4
-1
Change Language
Let there be three independent events E1, E2 and E3. The probability that only E1 occurs is $$\alpha$$, only E2 occurs is $$\beta$$ and only E3 occurs is $$\gamma$$. Let 'p' denote the probability of none of events occurs that satisfies the equations
($$\alpha$$ $$-$$ 2$$\beta$$)p = $$\alpha$$$$\beta$$ and ($$\beta$$ $$-$$ 3$$\gamma$$)p = 2$$\beta$$$$\gamma$$. All the given probabilities are assumed to lie in the interval (0, 1).

Then, $$\frac{Probability\ of\ occurrence\ of\ E_{1}}{Probability\ of\ occurrence\ of\ E_{3}} $$ is equal to _____________.
Your input ____
2
JEE Main 2021 (Online) 17th March Morning Shift
Numerical
+4
-1
Change Language
The maximum value of z in the following equation z = 6xy + y2, where 3x + 4y $$ \le $$ 100 and 4x + 3y $$ \le $$ 75 for x $$ \ge $$ 0 and y $$ \ge $$ 0 is __________.
Your input ____
3
JEE Main 2021 (Online) 17th March Morning Shift
Numerical
+4
-1
Change Language
If [ . ] represents the greatest integer function, then the value of


$$\left| {\int\limits_0^{\sqrt {{\pi \over 2}} } {\left[ {[{x^2}] - \cos x} \right]dx} } \right|$$ is ____________.
Your input ____
4
JEE Main 2021 (Online) 17th March Morning Shift
Numerical
+4
-1
Change Language
If $$f(x) = \sin \left( {{{\cos }^{ - 1}}\left( {{{1 - {2^{2x}}} \over {1 + {2^{2x}}}}} \right)} \right)$$ and its first derivative with respect to x is $$ - {b \over a}{\log _e}2$$ when x = 1, where a and b are integers, then the minimum value of | a2 $$-$$ b2 | is ____________ .
Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12