1
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of the limit

$$\mathop {\lim }\limits_{\theta \to 0} {{\tan (\pi {{\cos }^2}\theta )} \over {\sin (2\pi {{\sin }^2}\theta )}}$$ is equal to :
A
0
B
$$-$$$${1 \over 2}$$
C
$${1 \over 4}$$
D
$$-$$$${1 \over 4}$$
2
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Consider the function f : R $$ \to $$ R defined by

$$f(x) = \left\{ \matrix{ \left( {2 - \sin \left( {{1 \over x}} \right)} \right)|x|,x \ne 0 \hfill \cr 0,\,\,x = 0 \hfill \cr} \right.$$. Then f is :
A
not monotonic on ($$-$$$$\infty $$, 0) and (0, $$\infty $$)
B
monotonic on (0, $$\infty $$) only
C
monotonic on ($$-$$$$\infty $$, 0) only
D
monotonic on ($$-$$$$\infty $$, 0) $$\cup$$ (0, $$\infty $$)
3
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of $$\mathop {\lim }\limits_{n \to \infty } {{[r] + [2r] + ... + [nr]} \over {{n^2}}}$$, where r is a non-zero real number and [r] denotes the greatest integer less than or equal to r, is equal to :
A
r
B
$${r \over 2}$$
C
0
D
2r
4
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If x, y, z are in arithmetic progression with common difference d, x $$\ne$$ 3d, and the determinant of the matrix $$\left[ {\matrix{ 3 & {4\sqrt 2 } & x \cr 4 & {5\sqrt 2 } & y \cr 5 & k & z \cr } } \right]$$ is zero, then the value of k2 is :
A
72
B
12
C
36
D
6
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12