1
JEE Main 2021 (Online) 16th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The maximum value of

$$f(x) = \left| {\matrix{ {{{\sin }^2}x} & {1 + {{\cos }^2}x} & {\cos 2x} \cr {1 + {{\sin }^2}x} & {{{\cos }^2}x} & {\cos 2x} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {\sin 2x} \cr } } \right|,x \in R$$ is :
A
$$\sqrt 5 $$
B
$${3 \over 4}$$
C
5
D
$$\sqrt 7 $$
2
JEE Main 2021 (Online) 16th March Evening Shift
Numerical
+4
-1
Change Language
Let $${1 \over {16}}$$, a and b be in G.P. and $${1 \over a}$$, $${1 \over b}$$, 6 be in A.P., where a, b > 0. Then 72(a + b) is equal to ___________.
Your input ____
3
JEE Main 2021 (Online) 16th March Evening Shift
Numerical
+4
-1
Change Language
For real numbers $$\alpha$$, $$\beta$$, $$\gamma$$ and $$\delta $$, if
$$\int {{{({x^2} - 1) + {{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)} \over {({x^4} + 3{x^2} + 1){{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)}}dx} $$

$$ = \alpha {\log _e}\left( {{{\tan }^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right)} \right) + \beta {\tan ^{ - 1}}\left( {{{\gamma ({x^2} + 1)} \over x}} \right) + \delta {\tan ^{ - 1}}\left( {{{{x^2} + 1} \over x}} \right) + C$$

where C is an arbitrary constant, then the value of 10($$\alpha$$ + $$\beta$$$$\gamma$$ + $$\delta$$) is equal to ______________.
Your input ____
4
JEE Main 2021 (Online) 16th March Evening Shift
Numerical
+4
-1
Change Language
Let f : R $$ \to $$ R and g : R $$ \to $$ R be defined as

$$f(x) = \left\{ {\matrix{ {x + a,} & {x < 0} \cr {|x - 1|,} & {x \ge 0} \cr } } \right.$$ and

$$g(x) = \left\{ {\matrix{ {x + 1,} & {x < 0} \cr {{{(x - 1)}^2} + b,} & {x \ge 0} \cr } } \right.$$,

where a, b are non-negative real numbers. If (gof) (x) is continuous for all x $$\in$$ R, then a + b is equal to ____________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12