NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Main 2021 (Online) 27th August Evening Shift

Numerical
The number of photons emitted by a monochromatic (single frequency) infrared range finder of power 1 mW and wavelength of 1000 nm, in 0.1 second is x $$\times$$ 1013. The value of x is _____________. (Nearest integer)

(h = 6.63 $$\times$$ 10$$-$$34 Js, c = 3.00 $$\times$$ 108 ms$$-$$1)
Your Input ________

Answer

Correct Answer is 50

Explanation

Energy emitted in 0.1 sec.

= 0.1 sec. $$\times$$ $${10^{ - 3}}{J \over s}$$

= 10$$-$$4 J

If 'n' photons of $$\lambda$$ = 1000 nm are emitted, then 10$$-$$4 = n $$\times$$ $${{hc} \over \lambda }$$

$$ \Rightarrow {10^{ - 4}} = {{n \times 6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}} \over {1000 \times {{10}^{ - 9}}}}$$

$$\Rightarrow$$ n = 5.02 $$\times$$ 1014 = 50.2 $$\times$$ 1013

$$\Rightarrow$$ 50 (nearest integer)
2

JEE Main 2021 (Online) 27th August Morning Shift

Numerical
The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is equal to $${{{h^2}} \over {xma_0^2}}$$. The value of 10x is ___________. (a0 is radius of Bohr's orbit) (Nearest integer) [Given : $$\pi$$ = 3.14]
Your Input ________

Answer

Correct Answer is 3155

Explanation

$$mvr = {{nh} \over {2\pi }}$$

$$K.E. = {{{n^2}{h^2}} \over {8{\pi ^2}m{r^2}}} = {{4{h^2}} \over {8{\pi ^2}m{{(4{a_0})}^2}}}$$

$$ = \left( {{4 \over {8{\pi ^2} \times 16}}} \right){{{h^2}} \over {ma_0^2}}$$

$$\Rightarrow$$ x = 315.507

$$\Rightarrow$$ 10x = 3155 (nearest integer)
3

JEE Main 2021 (Online) 26th August Evening Shift

Numerical
A metal surface is exposed to 500 nm radiation. The threshold frequency of the metal for photoelectric current is 4.3 $$\times$$ 1014 Hz. The velocity of ejected electron is ____________ $$\times$$ 105 ms$$-$$1 (Nearest integer)

[Use : h = 6.63 $$\times$$ 10$$-$$34 Js, me = 9.0 $$\times$$ 10$$-$$31 kg]
Your Input ________

Answer

Correct Answer is 5

Explanation

$$\upsilon $$ : speed of electron having max. K.E.

$$\Rightarrow$$ from Einstein equation : E = $$\phi$$ + K.E.max

$$ \Rightarrow {{hc} \over \lambda } = h{\upsilon _0} + {1 \over 2}m{v^2}$$

$$ \Rightarrow {{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}} \over {500 \times {{10}^{ - 9}}}} = 6.63 \times {10^{ - 34}} \times 4.3 \times {10^{14}} + {1 \over 2}m{v^2}$$

$$ \Rightarrow {{6.63 \times 30 \times {{10}^{ - 20}}} \over 5} = 6.63 \times 4.3 \times {10^{ - 20}} + {1 \over 2}m{v^2}$$

$$ \Rightarrow 11.271 \times {10^{ - 20}}J = {1 \over 2} \times 9 \times {10^{ - 31}} \times {\upsilon ^2}$$

$$\Rightarrow$$ $$\upsilon $$ = 5 $$\times$$ 105 m/sec.
4

JEE Main 2021 (Online) 25th July Evening Shift

Numerical
An accelerated electron has a speed of 5 $$\times$$ 106 ms$$-$$1 with an uncertainty of 0.02%. The uncertainty in finding its location while in motion is x $$\times$$ 10$$-$$9 m. The value of x is ____________. (Nearest integer)

[Use mass of electron = 9.1 $$\times$$ 10$$-$$31 kg, h =6.63 $$\times$$ 10$$-$$34 Js, $$\pi$$ = 3.14]
Your Input ________

Answer

Correct Answer is 58

Explanation

$$\Delta v = {{0.02} \over {100}} \times 5 \times {10^6} = {10^3}$$ m/s

$$\Delta x.\Delta v = {h \over {4\pi m}}$$

$$ \Rightarrow $$ $$x \times {10^{ - 9}} \times {10^3} = {{6.63 \times {{10}^{ - 34}}} \over {4 \times 3.14 \times 9.1 \times {{10}^{ - 31}}}}$$

$$ \Rightarrow $$ $$x \times {10^{ - 9}} \times {10^3} = 0.058 \times {10^{ - 3}}$$

$$ \Rightarrow $$ $$x = {{0.058 \times {{10}^{ - 6}}} \over {{{10}^{ - 9}}}} = 58$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12