Based on Heisenberg's uncertainty principle, the uncertainty in the velocity of the electron to be found within an atomic nucleus of diameter $$10^{-15} \mathrm{~m}$$ is ________ $$\times 10^9 \mathrm{~ms}^{-1}$$ (nearest integer)
[Given : mass of electron $$=9.1 \times 10^{-31} \mathrm{~kg}$$, Plank's constant $$(h)=6.626 \times 10^{-34} \mathrm{Js}$$] (Value of $$\pi=3.14$$)
Wavenumber for a radiation having 5800 $$\mathop A\limits^o $$ wavelength is $$x \times 10 \mathrm{~cm}^{-1}$$ The value of $$x$$ is ________. (Integer answer)
A hypothetical electromagnetic wave is show below.
The frequency of the wave is $$\mathrm{x} \times 10^{19} \mathrm{~Hz}$$.
$$\mathrm{x}=$$ _________ (nearest integer)
For hydrogen atom, energy of an electron in first excited state is $$-3.4 \mathrm{~eV}, \mathrm{K} . \mathrm{E}$$. of the same electron of hydrogen atom is $$x \mathrm{~eV}$$. Value of $$x$$ is _________ $$\times 10^{-1} \mathrm{~eV}$$. (Nearest integer)