The electric current in a circular coil of 2 turns produces a magnetic induction B1 at its centre. The coil is unwound and in rewound into a circular coil of 5 tuns and the same current produces a magnetic induction B2 at its centre. The ratio of $${{{B_2}} \over {{B_1}}}$$ is
A small square loop of wire of side $$l$$ is placed inside a large square loop of wire $$\mathrm{L}(\mathrm{L}>>l)$$. Both loops are coplanar and their centres coincide at point $$\mathrm{O}$$ as shown in figure. The mutual inductance of the system is :
A coil is placed in a time varying magnetic field. If the number of turns in the coil were to be halved and the radius of wire doubled, the electrical power dissipated due to the current induced in the coil would be :
(Assume the coil to be short circuited.)
Two coils of self inductance L1 and L2 are connected in series combination having mutual inductance of the coils as M. The equivalent self inductance of the combination will be :