A metallic rod of length 'L' is rotated with an angular speed of '$$\omega$$' normal to a uniform magnetic field 'B' about an axis passing through one end of rod as shown in figure. The induced emf will be :

A conducting circular loop of radius $$\frac{10}{\sqrt\pi}$$ cm is placed perpendicular to a uniform magnetic field of 0.5 T. The magnetic field is decreased to zero in 0.5 s at a steady rate. The induced emf in the circular loop at 0.25 s is :

A series LCR circuit has $$\mathrm{L}=0.01\, \mathrm{H}, \mathrm{R}=10\, \Omega$$ and $$\mathrm{C}=1 \mu \mathrm{F}$$ and it is connected to ac voltage of amplitude $$\left(\mathrm{V}_{\mathrm{m}}\right) 50 \mathrm{~V}$$. At frequency $$60 \%$$ lower than resonant frequency, the amplitude of current will be approximately :

In a series $$L R$$ circuit $$X_{L}=R$$ and power factor of the circuit is $$P_{1}$$. When capacitor with capacitance $$C$$ such that $$X_{L}=X_{C}$$ is put in series, the power factor becomes $$P_{2}$$. The ratio $$\frac{P_{1}}{P_{2}}$$ is: