1
JEE Main 2017 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
In a coil of resistance 100 $$\Omega $$, a current is induced by changing the magnetic flux through it as shown in the figure. The magnitude of change in flux through the coil is:

JEE Main 2017 (Offline) Physics - Alternating Current and Electromagnetic Induction Question 190 English
A
275 Wb
B
200 Wb
C
225 Wb
D
250 Wb
2
JEE Main 2016 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
A conducting metal circular-wire-loop of radius r is placed perpendicular to a magnetic field which varies with time as
B = B0e$${^{{{ - t} \over r}}}$$ , where B0 and $$\tau $$ are constants, at time t = 0. If the resistance of the loop is R then the heat generated in the loop after a long time (t $$ \to $$ $$\infty $$) is :
A
$${{{\pi ^2}{r^4}B_0^4} \over {2\tau R}}$$
B
$${{{\pi ^2}{r^4}B_0^2} \over {2\tau R}}$$
C
$${{{\pi ^2}{r^4}B_0^2R} \over \tau }$$
D
$${{{\pi ^2}{r^4}B_0^2} \over {\tau R}}$$
3
JEE Main 2016 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Consider an electromagnetic wave propagating in vacuum. Choose the correct statement :
A
For an electromagnetic wave propagating in +x direction the electric field is $$\vec E = {1 \over {\sqrt 2 }}{E_{yz}}{\mkern 1mu} \left( {x,t} \right)\left( {\hat y - \hat z} \right)$$

and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz}}{\mkern 1mu} \left( {x,t} \right)\left( {\hat y + \hat z} \right)$$
B
For an electromagnetic wave propagating in +x direction the electric field is $$\vec E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {y,z,t} \right)\left( {\hat y + \hat z} \right)$$

and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz{\mkern 1mu} }}\left( {y,z,t} \right)\left( {\hat y + \hat z} \right)$$
C
For an electromagnetic wave propagating in + y direction the electric field is $$\overrightarrow E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat y$$
and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat z$$
D
For an electromagnetic wave propagating in + y direction the electric field is $$\overrightarrow E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat z$$
and the magnetic field is $$\overrightarrow B = {1 \over {\sqrt 2 }}{B_{z{\mkern 1mu} }}\left( {x,t} \right)\widehat y$$
4
JEE Main 2016 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Microwave oven acts on the principle of :
A
transferring electrons from lower to higher energy levels in water molecule
B
giving rotational energy to water molecules
C
giving vibrational energy to water molecules
D
giving translational energy to water molecules
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET