A wire of length 1m moving with velocity 8 m/s at right angles to a magnetic field of 2T. The magnitude of induced emf, between the ends of wire will be __________.
Match List I with List II
List I | List II | ||
---|---|---|---|
A. | Gauss's Law in Electrostatics | I. | $$\oint {\overrightarrow E \,.\,d\overrightarrow l = - {{d{\phi _B}} \over {dt}}} $$ |
B. | Faraday's Law | II. | $$\oint {\overrightarrow B \,.\,d\overrightarrow A = 0} $$ |
C. | Gauss's Law in Magnetism | III. | $$\oint {\overrightarrow B \,.\,d\overrightarrow l = {\mu _0}{i_c} + {\mu _0}{ \in _0}{{d{\phi _E}} \over {dt}}} $$ |
D. | Ampere-Maxwell Law | IV. | $$\oint {\overrightarrow E \,.\,d\overrightarrow s = {q \over {{ \in _0}}}} $$ |
Choose the correct answer from the options given below :
An electromagnetic wave is transporting energy in the negative $$z$$ direction. At a certain point and certain time the direction of electric field of the wave is along positive $$y$$ direction. What will be the direction of the magnetic field of the wave at that point and instant?
In an LC oscillator, if values of inductance and capacitance become twice and eight times, respectively, then the resonant frequency of oscillator becomes $$x$$ times its initial resonant frequency $$\omega_0$$. The value of $$x$$ is :