A uniform magnetic field of 0.4 T acts perpendicular to a circular copper disc 20 cm in radius. The disc is having a uniform angular velocity of 10 $ \pi $ rad s-1 about an axis through its centre and perpendicular to the disc. What is the potential difference developed between the axis of the disc and the rim? $(\pi=3.14)$
Regarding self-inductance:
A. The self-inductance of the coil depends on its geometry.
B. Self-inductance does not depend on the permeability of the medium.
C. Self-induced e.m.f. opposes any change in the current in a circuit.
D. Self-inductance is electromagnetic analogue of mass in mechanics.
E. Work needs to be done against self-induced e.m.f. in establishing the current.
Choose the correct answer from the options given below:
A rectangular metallic loop is moving out of a uniform magnetic field region to a field free region with a constant speed. When the loop is partially inside the magnate field, the plot of magnitude of induced emf $(\varepsilon)$ with time $(t)$ is given by
A square loop of side $$15 \mathrm{~cm}$$ being moved towards right at a constant speed of $$2\mathrm{~cm} / \mathrm{s}$$ as shown in figure. The front edge enters the $$50 \mathrm{~cm}$$ wide magnetic field at $$t=0$$. The value of induced emf in the loop at $$t=10 \mathrm{~s}$$ will be :