In Young's double slits experiment, the position of 5$$\mathrm{^{th}}$$ bright fringe from the central maximum is 5 cm. The distance between slits and screen is 1 m and wavelength of used monochromatic light is 600 nm. The separation between the slits is :
When a beam of white light is allowed to pass through convex lens parallel to principal axis, the different colours of light converge at different point on the principle axis after refraction. This is called :
Given below are two statements :
Statement I : If the Brewster's angle for the light propagating from air to glass is $$\mathrm{\theta_B}$$, then the Brewster's angle for the light propagating from glass to air is $$\frac{\pi}{2}-\theta_B$$
Statement II : The Brewster's angle for the light propagating from glass to air is $${\tan ^{ - 1}}({\mu _\mathrm{g}})$$ where $$\mathrm{\mu_g}$$ is the refractive index of glass.
In the light of the above statements, choose the correct answer from the options given below :
An unpolarised light beam of intensity $$2 I_{0}$$ is passed through a polaroid P and then through another polaroid Q which is oriented in such a way that its passing axis makes an angle of $$30^{\circ}$$ relative to that of P. The intensity of the emergent light is