A photon is emitted in transition from n = 4 to n = 1 level in hydrogen atom. The corresponding wavelength for this transition is (given, h = 4 $$\times$$ 10$$^{-15}$$ eVs) :
Consider the following radioactive decay process
$$_{84}^{218}A\buildrel \alpha \over \longrightarrow {A_1}\buildrel {{\beta ^ - }} \over \longrightarrow {A_2}\buildrel \gamma \over \longrightarrow {A_3}\buildrel \alpha \over \longrightarrow {A_4}\buildrel {{\beta ^ + }} \over \longrightarrow {A_5}\buildrel \gamma \over \longrightarrow {A_6}$$
The mass number and the atomic number of A$$_6$$ are given by :
Read the following statements :
(A) Volume of the nucleus is directly proportional to the mass number.
(B) Volume of the nucleus is independent of mass number.
(C) Density of the nucleus is directly proportional to the mass number.
(D) Density of the nucleus is directly proportional to the cube root of the mass number.
(E) Density of the nucleus is independent of the mass number.
Choose the correct option from the following options.
Find the ratio of energies of photons produced due to transition of an electron of hydrogen atom from its (i) second permitted energy level to the first level, and (ii) the highest permitted energy level to the first permitted level.