Young's modulus is determined by the equation given by $$\mathrm{Y}=49000 \frac{\mathrm{m}}{\mathrm{l}} \frac{\mathrm{dyne}}{\mathrm{cm}^2}$$ where $$M$$ is the mass and $$l$$ is the extension of wire used in the experiment. Now error in Young modules $$(Y)$$ is estimated by taking data from $$M-l$$ plot in graph paper. The smallest scale divisions are $$5 \mathrm{~g}$$ and $$0.02 \mathrm{~cm}$$ along load axis and extension axis respectively. If the value of $M$ and $l$ are $$500 \mathrm{~g}$$ and $$2 \mathrm{~cm}$$ respectively then percentage error of $$Y$$ is :
Correct Bernoulli's equation is (symbols have their usual meaning) :
Pressure inside a soap bubble is greater than the pressure outside by an amount : (given : $$\mathrm{R}=$$ Radius of bubble, $$\mathrm{S}=$$ Surface tension of bubble)
A small ball of mass $$m$$ and density $$\rho$$ is dropped in a viscous liquid of density $$\rho_0$$. After sometime, the ball falls with constant velocity. The viscous force on the ball is :