Two bodies of masses $$m_{1}=5 \mathrm{~kg}$$ and $$m_{2}=3 \mathrm{~kg}$$ are connected by a light string going over a smooth light pulley on a smooth inclined plane as shown in the figure. The system is at rest. The force exerted by the inclined plane on the body of mass $$\mathrm{m}_{1}$$ will be : [Take $$\left.\mathrm{g}=10 \mathrm{~ms}^{-2}\right]$$
A uniform metal chain of mass m and length 'L' passes over a massless and frictionless pulley. It is released from rest with a part of its length 'l' is hanging on one side and rest of its length '$$\mathrm{L}-l$$' is hanging on the other side of the pully. At a certain point of time, when $$l=\frac{L}{x}$$, the acceleration of the chain is $$\frac{g}{2}$$. The value of x is __________.
A block of mass M slides down on a rough inclined plane with constant velocity. The angle made by the incline plane with horizontal is $$\theta$$. The magnitude of the contact force will be :
A block 'A' takes 2 s to slide down a frictionless incline of 30$$^\circ$$ and length 'l', kept inside a lift going up with uniform velocity 'v'. If the incline is changed to 45$$^\circ$$, the time taken by the block, to slide down the incline, will be approximately :