1
JEE Main 2021 (Online) 20th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
A steel block of 10 kg rests on a horizontal floor as shown. When three iron cylinders are placed on it as shown, the block and cylinders go down with an acceleration 0.2 m/s2. The normal reaction R' by the floor if mass of the iron cylinders are equal and of 20 kg each, is ____________ N. [Take g = 10 m/s2 and $$\mu$$s = 0.2]

JEE Main 2021 (Online) 20th July Morning Shift Physics - Laws of Motion Question 78 English
A
686
B
684
C
714
D
716
2
JEE Main 2021 (Online) 16th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
A block of mass m slides along a floor while a force of magnitude F is applied to it at an angle $$\theta$$ as shown in figure. The coefficient of kinetic friction is $$\mu$$k. then, the block's acceleration 'a' is given by :

(g is acceleration due to gravity)

JEE Main 2021 (Online) 16th March Morning Shift Physics - Laws of Motion Question 84 English
A
$${F \over m}\cos \theta + {\mu _K}\left( {g - {F \over m}\sin \theta } \right)$$
B
$${F \over m}\cos \theta - {\mu _K}\left( {g - {F \over m}\sin \theta } \right)$$
C
$$-$$$${F \over m}\cos \theta - {\mu _K}\left( {g - {F \over m}\sin \theta } \right)$$
D
$${F \over m}\cos \theta - {\mu _K}\left( {g + {F \over m}\sin \theta } \right)$$
3
JEE Main 2021 (Online) 26th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Two masses A and B, each of mass M are fixed together by a massless spring. A force acts on the mass B as shown in the figure. If the mass A starts moving away from mass B with acceleration 'a', then the acceleration of mass B will be :

JEE Main 2021 (Online) 26th February Evening Shift Physics - Laws of Motion Question 85 English
A
$${{MF} \over {F + Ma}}$$
B
$${{F + Ma} \over M}$$
C
$${{Ma - F} \over M}$$
D
$${{F - Ma} \over M}$$
4
JEE Main 2021 (Online) 24th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
A particle is projected with velocity v0 along x-axis. A damping force is acting on the particle which is proportional to the square of the distance from the origin i.e. ma = $$-$$ $$\alpha$$x2. The distance at which the particle stops :
A
$${\left[ {{{3mv_0^2} \over {2\alpha }}} \right]^{{1 \over 3}}}$$
B
$${\left( {{{2{v_0}} \over {3\alpha }}} \right)^{{1 \over 3}}}$$
C
$${\left( {{{3v_0^2} \over {2\alpha }}} \right)^{{1 \over 2}}}$$
D
$${\left( {{{2v_0^2} \over {3\alpha }}} \right)^{{1 \over 2}}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12