The elastic potential energy stored in a steel wire of length $$20 \mathrm{~m}$$ stretched through $$2 \mathrm{~cm}$$ is $$80 \mathrm{~J}$$. The cross sectional area of the wire is __________ $$\mathrm{mm}^{2}$$.
$$\left(\right.$$ Given, $$\left.y=2.0 \times 10^{11} \mathrm{Nm}^{-2}\right)$$
Glycerin of density $$1.25 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$$ is flowing through the conical section of pipe The area of cross-section of the pipe at its ends are $$10 \mathrm{~cm}^{2}$$ and $$5 \mathrm{~cm}^{2}$$ and pressure drop across its length is $$3 ~\mathrm{Nm}^{-2}$$. The rate of flow of glycerin through the pipe is $$x \times 10^{-5} \mathrm{~m}^{3} \mathrm{~s}^{-1}$$. The value of $$x$$ is ___________.
The surface tension of soap solution is $$3.5 \times 10^{-2} \mathrm{~Nm}^{-1}$$. The amount of work done required to increase the radius of soap bubble from $$10 \mathrm{~cm}$$ to $$20 \mathrm{~cm}$$ is _________ $$\times ~10^{-4} \mathrm{~J}$$.
$$(\operatorname{take} \pi=22 / 7)$$