The escape velocities of two planets $$\mathrm{A}$$ and $$\mathrm{B}$$ are in the ratio $$1: 2$$. If the ratio of their radii respectively is $$1: 3$$, then the ratio of acceleration due to gravity of planet A to the acceleration of gravity of planet B will be :
For a body projected at an angle with the horizontal from the ground, choose the correct statement.
If earth has a mass nine times and radius twice to that of a planet P. Then $$\frac{v_{e}}{3} \sqrt{x} \mathrm{~ms}^{-1}$$ will be the minimum velocity required by a rocket to pull out of gravitational force of $$\mathrm{P}$$, where $$v_{e}$$ is escape velocity on earth. The value of $$x$$ is
Given below are two statements:
Statement I: Acceleration due to gravity is different at different places on the surface of earth.
Statement II: Acceleration due to gravity increases as we go down below the earth's surface.
In the light of the above statements, choose the correct answer from the options given below