If the distance of the earth from Sun is 1.5 $$\times$$ 10$$^6$$ km. Then the distance of an imaginary planet from Sun, if its period of revolution is 2.83 years is :
Given below are two statements:
Statement I : Acceleration due to earth's gravity decreases as you go 'up' or 'down' from earth's surface.
Statement II : Acceleration due to earth's gravity is same at a height 'h' and depth 'd' from earth's surface, if h = d.
In the light of above statements, choose the most appropriate answer from the options given below
The weight of a body at the surface of earth is 18 N. The weight of the body at an altitude of 3200 km above the earth's surface is (given, radius of earth $$\mathrm{R_e=6400~km}$$) :
An object of mass $$1 \mathrm{~kg}$$ is taken to a height from the surface of earth which is equal to three times the radius of earth. The gain in potential energy of the object will be [If, $$\mathrm{g}=10 \mathrm{~ms}^{-2}$$ and radius of earth $$=6400 \mathrm{~km}$$ ]