A planet has double the mass of the earth. Its average density is equal to that of the earth. An object weighing $$\mathrm{W}$$ on earth will weigh on that planet:
The escape velocities of two planets $$\mathrm{A}$$ and $$\mathrm{B}$$ are in the ratio $$1: 2$$. If the ratio of their radii respectively is $$1: 3$$, then the ratio of acceleration due to gravity of planet A to the acceleration of gravity of planet B will be :
For a body projected at an angle with the horizontal from the ground, choose the correct statement.
If earth has a mass nine times and radius twice to that of a planet P. Then $$\frac{v_{e}}{3} \sqrt{x} \mathrm{~ms}^{-1}$$ will be the minimum velocity required by a rocket to pull out of gravitational force of $$\mathrm{P}$$, where $$v_{e}$$ is escape velocity on earth. The value of $$x$$ is