A capacitor of capacitance $$100 \mu \mathrm{F}$$ is charged to a potential of $$12 \mathrm{~V}$$ and connected to a $$6.4 \mathrm{~mH}$$ inductor to produce oscillations. The maximum current in the circuit would be :
Primary side of a transformer is connected to $$230 \mathrm{~V}, 50 \mathrm{~Hz}$$ supply. Turns ratio of primary to secondary winding is $$10: 1$$. Load resistance connected to secondary side is $$46 \Omega$$. The power consumed in it is :
Given below are two statements:
Statement I : An AC circuit undergoes electrical resonance if it contains either a capacitor or an inductor.
Statement II : An AC circuit containing a pure capacitor or a pure inductor consumes high power due to its non-zero power factor.
In the light of above statements, choose the correct answer form the options given below:
Given below are two statements:
Statement I : When the frequency of an a.c source in a series LCR circuit increases, the current in the circuit first increases, attains a maximum value and then decreases.
Statement II : In a series LCR circuit, the value of power factor at resonance is one.
In the light of given statements, choose the most appropriate answer from the options given below.