Two waves of intensity ratio $$1: 9$$ cross each other at a point. The resultant intensities at that point, when (a) Waves are incoherent is $$I_1$$ (b) Waves are coherent is $$I_2$$ and differ in phase by $$60^{\circ}$$. If $$\frac{I_1}{I_2}=\frac{10}{x}$$ then $$x=$$ _________.
In a single slit diffraction pattern, a light of wavelength 6000$$\mathop A\limits^o$$ is used. The distance between the first and third minima in the diffraction pattern is found to be $$3 \mathrm{~mm}$$ when the screen in placed $$50 \mathrm{~cm}$$ away from slits. The width of the slit is _________ $$\times 10^{-4} \mathrm{~m}$$.
In a double slit experiment shown in figure, when light of wavelength $$400 \mathrm{~nm}$$ is used, dark fringe is observed at $$P$$. If $$\mathrm{D}=0.2 \mathrm{~m}$$, the minimum distance between the slits $$S_1$$ and $$S_2$$ is _________ $$\mathrm{mm}$$.
A parallel beam of monochromatic light of wavelength 5000 $$\mathop A\limits^o$$ is incident normally on a single narrow slit of width $$0.001 \mathrm{~mm}$$. The light is focused by convex lens on screen, placed on its focal plane. The first minima will be formed for the angle of diffraction of _________ (degree).