A parallel beam of monochromatic light of wavelength $$600 \mathrm{~nm}$$ passes through single slit of $$0.4 \mathrm{~mm}$$ width. Angular divergence corresponding to second order minima would be _________ $$\times 10^{-3} \mathrm{~rad}$$.
Two coherent monochromatic light beams of intensities I and $$4 \mathrm{~I}$$ are superimposed. The difference between maximum and minimum possible intensities in the resulting beam is $$x \mathrm{~I}$$. The value of $$x$$ is __________.
In a single slit experiment, a parallel beam of green light of wavelength $$550 \mathrm{~nm}$$ passes through a slit of width $$0.20 \mathrm{~mm}$$. The transmitted light is collected on a screen $$100 \mathrm{~cm}$$ away. The distance of first order minima from the central maximum will be $$x \times 10^{-5} \mathrm{~m}$$. The value of $$x$$ is :
In Young's double slit experiment, carried out with light of wavelength $$5000~\mathop A\limits^o$$, the distance between the slits is $$0.3 \mathrm{~mm}$$ and the screen is at $$200 \mathrm{~cm}$$ from the slits. The central maximum is at $$x=0 \mathrm{~cm}$$. The value of $$x$$ for third maxima is __________ $$\mathrm{mm}$$.