As shown in the figure, in Young's double slit experiment, a thin plate of thickness $$t=10 \mu \mathrm{m}$$ and refractive index $$\mu=1.2$$ is inserted infront of slit $$S_{1}$$. The experiment is conducted in air $$(\mu=1)$$ and uses a monochromatic light of wavelength $$\lambda=500 \mathrm{~nm}$$. Due to the insertion of the plate, central maxima is shifted by a distance of $$x \beta_{0} . \beta_{0}$$ is the fringe-width befor the insertion of the plate. The value of the $$x$$ is _____________.

A thin cylindrical rod of length $$10 \mathrm{~cm}$$ is placed horizontally on the principle axis of a concave mirror of focal length $$20 \mathrm{~cm}$$. The rod is placed in a such a way that mid point of the rod is at $$40 \mathrm{~cm}$$ from the pole of mirror. The length of the image formed by the mirror will be $$\frac{x}{3} \mathrm{~cm}$$. The value of $$x$$ is _____________.

In a medium the speed of light wave decreases to $$0.2$$ times to its speed in free space The ratio of relative permittivity to the refractive index of the medium is $$x: 1$$. The value of $$x$$ is _________.

(Given speed of light in free space $$=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$$ and for the given medium $$\mu_{\mathrm{r}}=1$$)