A double slit interference experiment performed with a light of wavelength 600 nm forms an interference fringe pattern on a screen with 10 th bright fringe having its centre at a distance of 10 mm from the central maximum. Distance of the centre of the same 10 th bright fringe from the central maximum when the source of light is replaced by another source of wavelength 660 nm would be ________ mm .
Monochromatic light of wavelength $$500 \mathrm{~nm}$$ is used in Young's double slit experiment. An interference pattern is obtained on a screen. When one of the slits is covered with a very thin glass plate (refractive index $$=1.5$$), the central maximum is shifted to a position previously occupied by the $$4^{\text {th }}$$ bright fringe. The thickness of the glass-plate is __________ $$\mu \mathrm{m}$$.
In a Young's double slit experiment, the intensity at a point is $$\left(\frac{1}{4}\right)^{\text {th }}$$ of the maximum intensity, the minimum distance of the point from the central maximum is _________ $$\mu \mathrm{m}$$. (Given : $$\lambda=600 \mathrm{~nm}, \mathrm{~d}=1.0 \mathrm{~mm}, \mathrm{D}=1.0 \mathrm{~m}$$)
Two slits are $$1 \mathrm{~mm}$$ apart and the screen is located $$1 \mathrm{~m}$$ away from the slits. A light of wavelength $$500 \mathrm{~nm}$$ is used. The width of each slit to obtain 10 maxima of the double slit pattern within the central maximum of the single slit pattern is __________ $$\times 10^{-4} \mathrm{~m}$$.