Three infinitely long charged thin sheets are placed as shown in figure. The magnitude of electric field at the point $$P$$ is $$\frac{x \sigma}{\epsilon_0}$$. The value of $$x$$ is _________ (all quantities are measured in SI units).
The electric field at point $$\mathrm{p}$$ due to an electric dipole is $$\mathrm{E}$$. The electric field at point $$\mathrm{R}$$ on equitorial line will be $$\frac{\mathrm{E}}{x}$$. The value of $$x$$ :
An infinite plane sheet of charge having uniform surface charge density $$+\sigma_{\mathrm{s}} \mathrm{C} / \mathrm{m}^2$$ is placed on $$x$$-$$y$$ plane. Another infinitely long line charge having uniform linear charge density $$+\lambda_e \mathrm{C} / \mathrm{m}$$ is placed at $$z=4 \mathrm{~m}$$ plane and parallel to $$y$$-axis. If the magnitude values $$\left|\sigma_{\mathrm{s}}\right|=2\left|\lambda_{\mathrm{e}}\right|$$ then at point $$(0,0,2)$$, the ratio of magnitudes of electric field values due to sheet charge to that of line charge is $$\pi \sqrt{n}: 1$$. The value of $$n$$ is _________.
Then the charge on the particle will be $\frac{1}{\sqrt{x}} \mu \mathrm{C}$ where $x=$ ___________ . [use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ ]