1
JEE Main 2023 (Online) 11th April Morning Shift
Numerical
+4
-1
Change Language

As shown in the figure, a configuration of two equal point charges $$\left(q_{0}=+2 \mu \mathrm{C}\right)$$ is placed on an inclined plane. Mass of each point charge is $$20 \mathrm{~g}$$. Assume that there is no friction between charge and plane. For the system of two point charges to be in equilibrium (at rest) the height $$\mathrm{h}=x \times 10^{-3} \mathrm{~m}$$.

The value of $$x$$ is ____________.

(Take $$\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}, g=10 \mathrm{~m} \mathrm{~s}^{-2}$$ )

JEE Main 2023 (Online) 11th April Morning Shift Physics - Electrostatics Question 41 English

Your input ____
2
JEE Main 2023 (Online) 10th April Evening Shift
Numerical
+4
-1
Change Language

An electron revolves around an infinite cylindrical wire having uniform linear charge density $$2 \times 10^{-8} \mathrm{C} \mathrm{m}^{-1}$$ in circular path under the influence of attractive electrostatic field as shown in the figure. The velocity of electron with which it is revolving is ___________ $$\times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$$. Given mass of electron $$=9 \times 10^{-31} \mathrm{~kg}$$

JEE Main 2023 (Online) 10th April Evening Shift Physics - Electrostatics Question 39 English

Your input ____
3
JEE Main 2023 (Online) 10th April Morning Shift
Numerical
+4
-1
Change Language

Three concentric spherical metallic shells X, Y and Z of radius a, b and c respectively [a < b < c] have surface charge densities $$\sigma,-\sigma$$ and $$\sigma$$ respectively. The shells X and Z are at same potential. If the radii of X & Y are 2 cm and 3 cm, respectively. The radius of shell Z is _________ cm.

Your input ____
4
JEE Main 2023 (Online) 8th April Morning Shift
Numerical
+4
-1
Change Language

An electric dipole of dipole moment is $$6.0 \times 10^{-6} ~\mathrm{C m}$$ placed in a uniform electric field of $$1.5 \times 10^{3} ~\mathrm{NC}^{-1}$$ in such a way that dipole moment is along electric field. The work done in rotating dipole by $$180^{\circ}$$ in this field will be ___________ $$\mathrm{m J}$$.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12