At the centre of a half ring of radius $$\mathrm{R}=10 \mathrm{~cm}$$ and linear charge density $$4 \mathrm{~nC} \mathrm{~m}^{-1}$$, the potential is $$x \pi \mathrm{V}$$. The value of $$x$$ is _________.
If the net electric field at point $$\mathrm{P}$$ along $$\mathrm{Y}$$ axis is zero, then the ratio of $$\left|\frac{q_2}{q_3}\right|$$ is $$\frac{8}{5 \sqrt{x}}$$, where $$x=$$ ________.
An electric field, $$\overrightarrow{\mathrm{E}}=\frac{2 \hat{i}+6 \hat{j}+8 \hat{k}}{\sqrt{6}}$$ passes through the surface of $$4 \mathrm{~m}^2$$ area having unit vector $$\hat{n}=\left(\frac{2 \hat{i}+\hat{j}+\hat{k}}{\sqrt{6}}\right)$$. The electric flux for that surface is _________ $$\mathrm{Vm}$$.
Three infinitely long charged thin sheets are placed as shown in figure. The magnitude of electric field at the point $$P$$ is $$\frac{x \sigma}{\epsilon_0}$$. The value of $$x$$ is _________ (all quantities are measured in SI units).