The equation of a wave travelling on a string is y = sin[20πx + 10πt], where x and t are distance and time in SI units. The minimum distance between two points having the same oscillating speed is :
Two harmonic waves moving in the same direction superimpose to form a wave $x=\mathrm{a} \cos (1.5 \mathrm{t}) \cos (50.5 \mathrm{t})$ where t is in seconds. Find the period with which they beat. (close to nearest integer)
Displacement of a wave is expressed as $x(t)=5 \cos \left(628 t+\frac{\pi}{2}\right) \mathrm{m}$. The wavelength of the wave when its velocity is $300 \mathrm{~m} / \mathrm{s}$ is :
$$(\pi=3.14)$$
In an experiment with a closed organ pipe, it is filled with water by $\left(\frac{1}{5}\right)$ th of its volume. The frequency of the fundamental note will change by